

QUICKSWITCH[®] PRODUCTS 2.5V / 3.3V 16-BIT HIGH BANDWIDTH BUS SWITCH

DESCRIPTION:

high impedence at the terminals.

A5 A6 A7

A4

applications.

The QS32XVH2245 HotSwitch is a high bandwidth, 16-bit bus switch. The

QS32XVH2245, with 25 Ω ON resistance and 1.35ns propagation delay, is

ideal for line matching and low noise environments. The switches can be turned

ON under the control of the LVTTL-compatible Output Enable (OEx) signal for

bidirectional data flow with no added delay or ground bounce. In the ON state,

the switches can pass signals up to 5V. In the OFF state, the switches offer very

The combination of small propagation delay, high OFF impedance, and

The QS32XVH2245 is characterized for operation from -40°C to +85°C.

over-voltage tolerance makes the QS32XVH2245 ideal for hot-swapping

FEATURES:

- N channel FET switches with no parasitic diode to Vcc
 - Isolation under power-off conditions
 - No DC path to Vcc or GND
 - 5V tolerant in OFF and ON state
- 5V tolerant I/Os
- Flat Row characteristics over operating range
- Rail-to-rail switching 0 5V
- Bidirectional dataflow with near-zero delay: no added ground bounce
- · Excellent Ron matching between channels
- Vcc operation: 2.3V to 3.6V
- · High bandwidth
- LVTTL-compatible control Inputs
- Undershoot Clamp Diodes on all switch and control Inputs
- · Low I/O capacitance, 4pF typical
- 25Ω resistors for low noise and line matching
- Available in 40-pin QVSOP package

APPLICATIONS:

- · Hot-swapping
- · Low distortion analog switch
- Replaces mechanical relay
- ATM 25/155 switching

FUNCTIONAL BLOCK DIAGRAM

OF1 B0 B1 B2 Вз B4 B5 B6 B7 **A**8 **A**9 A10 A11 A12 A13 A14 A15 OE₂ B8 B9 B12 B13 B14 B10 B11 B15

A0 A1 A2 A3

IDT and the IDT logo is a registered trademarks of Integrated Device Technology, Inc.

INDUSTRIAL TEMPERATURE RANGE

JUNE 2011

PIN CONFIGURATION

	1		_		1	
NC	d	1	Ŭ	40	þ	Vcc
A0	Ц	2		39		OE1
A1	Ц	3		38		B0
A2	Ц	4		37		B1
A3	Ц	5		36		B2
A4	Ц	6		35		B3
A 5	Ц	7		34		B4
A6	Ц	8		33		B5
A7	Ц	9		32	þ	B6
GND	Ц	10		31		B7
NC	Ц	11		30	þ	Vcc
A8	Ц	12		29		OE2
A9	Ц	13		28	þ	B8
A10	Ц	14		27		B9
A11	Ц	15		26	þ	B10
A12	Ц	16		25		B11
A13	Ц	17		24	þ	B12
A14	Ц	18		23		B13
A15	Ц	19		22		B14
GND	q	20		21		B15

QVSOP TOP VIEW

INDUSTRIAL TEMPERATURE RANGE

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Description	Max	Unit
VTERM ⁽²⁾	SupplyVoltage to Ground	-0.5 to +4.6	V
VTERM ⁽³⁾	DC Switch Voltage Vs	-0.5 to +5.5	V
VTERM ⁽³⁾	DC Input Voltage VIN	-0.5 to +5.5	V
VAC	AC Input Voltage (pulse width ≤20ns)	-3	V
Ιουτ	DC Output Current (max. sink current/pin) 120		mA
Tstg	Storage Temperature	-65 to +150	°C

NOTES:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. Vcc terminals.

3. All terminals except Vcc .

CAPACITANCE (TA = +25°C, F = 1MHz, VIN = 0V, VOUT = 0V)

Symbol	Parameter ⁽¹⁾	Тур.	Max.	Unit
CIN	Control Inputs	3	5	pF
CI/O	Quickswitch Channels (Switch OFF)	4	6	pF
CI/O	Quickswitch Channels (Switch ON)	8	12	pF

NOTE:

1. This parameter is guaranteed but not production tested.

PIN DESCRIPTION

Pin Names	Description
ŌĒx	Output Enable
Ax	Data I/Os
Bx	Data I/Os

FUNCTION TABLE⁽¹⁾

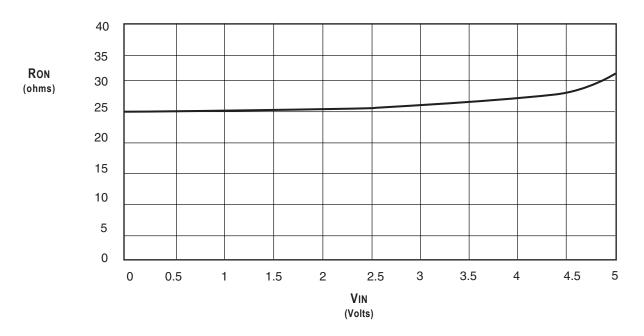
ŌĒx	Function
н	Disconnected
L	Connect (Ax = Bx)

NOTE:

1. H = HIGH Voltage Level

L = LOW Voltage Level

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE


Following Conditions Apply Unless Otherwise Specified: Industrial: TA = -40°C to +85°C, Vcc = $3.3V \pm 0.3V$

Symbol	Parameter	Test C	onditions		Min.	Typ. ⁽¹⁾	Max.	Unit
Vih	Input HIGH Voltage	Guaranteed Logic HIGH	Vcc = 2.3V to 2.7	Ϋ́	1.7	—	_	V
		for Control Inputs	Vcc = 2.7V to 3.6	ïV	2	-	_	
Vil	InputLOWVoltage	GuaranteedLogicLOW	Vcc = 2.3V to 2.7	V	—	—	0.7	V
		for Control Inputs	Vcc = 2.7V to 3.6	V	_	_	0.8]
lin	Input Leakage Current (Control Inputs)	$0V \le VIN \le VCC$		—	—	±1	μA	
loz	Off-State Current (Hi-Z)	$0V \le V_{OUT} \le 5V$, Switches OFF		_	—	±1	μA	
IOFF	Data Input/Output Power Off Leakage	VIN or VOUT 0V to 5V, VCC =	VIN or VOUT 0V to 5V, Vcc = 0V			—	±1	μA
		Vcc = 2.3V	VIN = 0V	Ion = 30mA	18	27	39	
Ron	Switch ON Resistance	Typical at Vcc = 2.5V	VIN = 1.7V	Ion = 15mA	18	28	41	Ω
		Vcc = 3V	VIN = 0V	Ion = 30mA	18	25	38	
			VIN = 2.4V	Ion = 15mA	18	26	40	

NOTE:

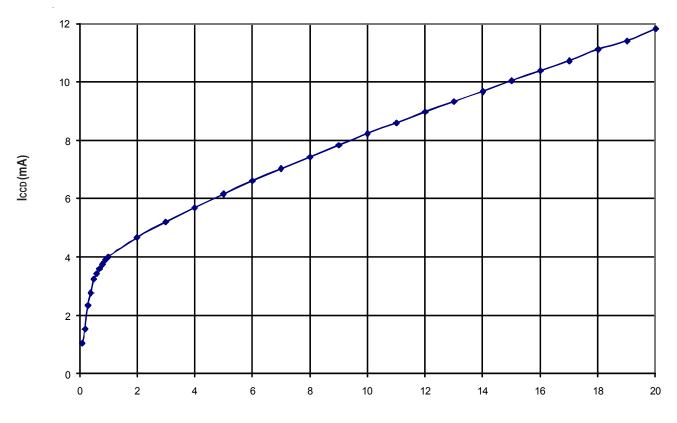
1. Typical values are at Vcc = 3.3V and TA = 25° C.

TYPICAL ON RESISTANCE vs VIN AT Vcc = 3.3V

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditions ⁽¹⁾	Min.	Тур.	Max.	Unit
lccq	Quiescent Power Supply Current	Vcc = Max., VIN = GND or Vcc, f = 0		4	8	mA
ΔICC	Power Supply Current (2,3) per Input HIGH	Vcc = Max., VIN = 3V, f = 0 per Control Input	_	_	30	μA
ICCD	Dynamic Power Supply Current per Output Enable Control Input ⁽⁴⁾	Vcc = 3.3V, A and B Pins Open, Control Inputs Toggling @ 50% Duty Cycle	See Typical	ICCD vs Enable	e Frequency (graph below

NOTES:


1. For conditions shown as Min. or Max., use the appropriate values specified under DC Electrical Characteristics.

2. Per input driven at the specified level. A and B pins do not contribute to Δ lcc.

3. This parameter is guaranteed but not tested.

4. This parameter represents the current required to switch internal capacitance at the specified frequency. The A and B inputs do not contribute to the Dynamic Power Supply Current. This parameter is guaranteed but not production tested.

TYPICAL ICCD vs ENABLE FREQUENCY CURVE AT VCC = 3.3V

ENABLE FREQUENCY (MHz)

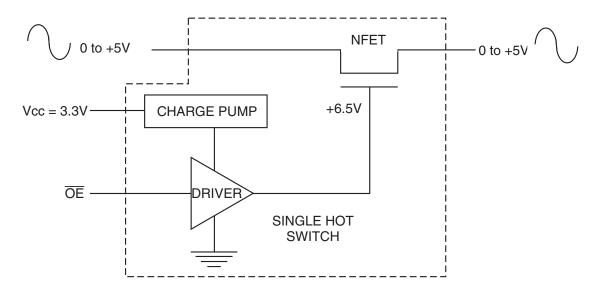
SWITCHING CHARACTERISTICS OVER OPERATING RANGE

T_A = -40°C to +85°C

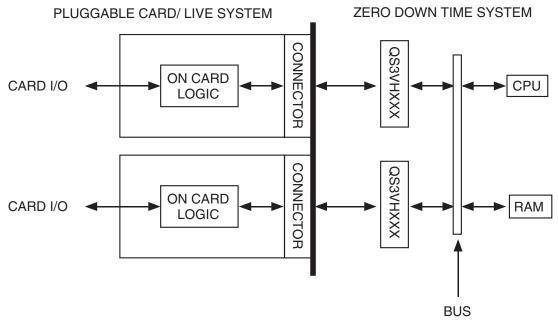
		Vcc = 2.5	± 0.2V ⁽¹⁾	$Vcc = 3.3 \pm 0.3 V^{(1)}$		
Symbol	Parameter	Min. ⁽⁴⁾	Max.	Min. ⁽⁴⁾	Max.	Unit
tPLH	Data Propagation Delay ^(2,3)		0.9	—	1.35	ns
t PHL	Ax to/from Bx					
tPZL	Switch Turn-On Delay	1.5	9	1.5	8	ns
tPZH	OEx to Ax/Bx					
tPLZ	Switch Turn-Off Delay	1.5	7.5	1.5	7.5	ns
tPHZ	OEx to Ax/Bx					
f OEx	Operating Frequency - Enable ^(2,5)		10		20	MHz

NOTES:

1. See Test Conditions under TEST CIRCUITS AND WAVEFORMS.


2. This parameter is guaranteed but not production tested.

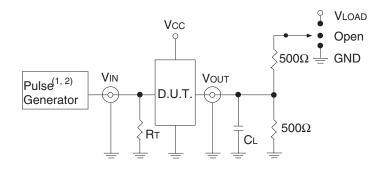
3. The bus switch contributes no propagation delay other than the RC delay of the ON resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 1.35ns at CL = 50pF. Since this time constant is much smaller than the rise and fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the bus switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.


4. Minimums are guaranteed but not production tested.

5. Maximum toggle frequency for $\overline{\text{OEx}}$ control input (pass voltage > Vcc, VIN = 5V, RLOAD \geq 1M Ω , no CLOAD).

SOME APPLICATIONS FOR HOTSWITCH PRODUCTS

Rail-to-Rail Switching



Hot-Swapping

TEST CIRCUITS AND WAVEFORMS

TEST CONDITIONS

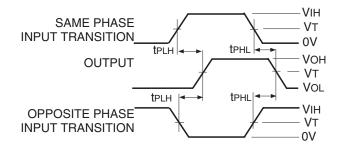
Symbol	$Vcc^{(1)}= 3.3V \pm 0.3V$	$Vcc^{(2)} = 2.5V \pm 0.2V$	Unit
Vload	6	2 x Vcc	V
Vih	3	Vcc	V
Vт	1.5	Vcc/2	V
VLZ	300	150	mV
Vнz	300	150	mV
CL	50	30	pF

Test Circuits for All Outputs

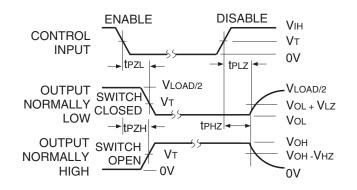
DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance.

 R_T = Termination resistance: should be equal to ZOUT of the Pulse Generator.


NOTES:

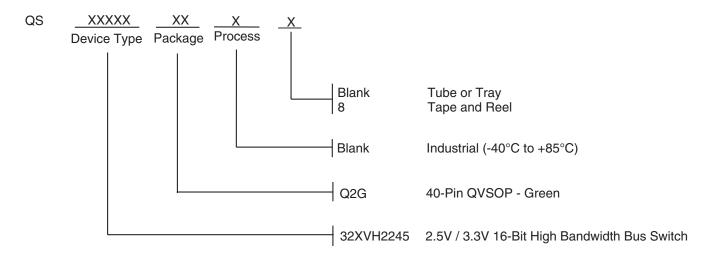
1. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2.5ns; tR \leq 2.5ns.


2. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2ns; tR \leq 2ns.

SWITCH POSITION

Test	Switch
tplz/tpzl	Vload
tphz/tpzh	GND
tPD	Open

Propagation Delay



NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

Enable and Disable Times

ORDERING INFORMATION

Datasheet Document History

09/01/08 Pg. 4, 8 06/14/11 Pg. 8 Revise ICCQ Typ. and Max. Remove non green package version and updated the ordering information by removing the "IDT" notation. Updated ordering information to include tube or tray and tape & reel.

CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road San Jose, CA 95138 for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com for Tech Support: logichelp@idt.com